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Abstract. In [2] the solutions of Andreoli's differential equation in genetic algebras 
with genetic realization were shown to converge to equilibria. Here we derive an 
explicit formula for these limits. 
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1 Continuous time models and genetic algebras 

Algebras in genetics have attracted considerable interest in recent years. Both dis- 
crete and continuous processes are studied. Here we will deal with the latter ones. 
In [1], Andreoli introduced the differential equation 

= X  2 - - X ,  

x (0 )  = y 

in a genetic algebra to model the time dependence of the genotype frequencies of a 
population in the limiting case of continuously overlapping generations. Heuch [3] 
showed that this equation can be solved by elementary functions. A first result on 
the long-time behavior was proved in W6rz-Busekros [6]. In. [2] it was shown that 
for genetic algebras with genetic realization the solution converges to an idempotent 
of the algebra (a property that also holds for Bemstein algebras for which a closed 
formula for the solution was given). The question of how to compute the limit 
efficiently had to remain open there. This paper is an attempt to fill this gap. The 
main result is an explicit formula for the limit of the solution of the differential 
equation in question. 

We first summarize some facts which were proved in [2] and [5]: 

Proposition 1.1 Let  G(y,  t) resp. S (y ,  t) be the solution o f  2 = x 2 resp. 2 = x 2 - x 
with x(O) = y in a real or complex commutative algebra A o f  finite dimension. 
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a) S(y, t ) =  e - t .  G(y, 1 - e - t ) ,  wherever both sides are defined. 
b) Let G(y, t) = ~>=ot~gk(y) be the Taylor expansion about t = O. Then 

k 
(k + 1) gk+l (Y) = Dgk (y)y2 = ~ gj (y) gk-j (Y) 

j=O 

for all k >= O. In particular, for all k > O, gk is a homogeneous polynomial map of 
degree k + 1 : go(Y) = Y, gl (y) = y 2 ,  g2(Y) = y3, g3(Y) = ½(2Y 4 + y2y2) etc. 
c) lim S(y, t) - lim gk (Y), whenever the right hand side exists. 

t---+ c~ k-.+ cxz 

d) For any homomorphism co " A -+ lK, co(gk(Y)) = co(y)k+l for all y C A and 
k~O. 

Now let lK denote the field of  real or complex numbers and A a finite di- 
mensional commutative lK-algebra with left multiplication L (x). Then A is called a 
genetic algebra i f  there is a nontrivial homomorphism co : A --+ IK and the coef- 
ficients o f  the characteristic polynomial o f  any transformation f (L (xl) . . . . .  L (xs)) 
only depend on co(x1) . . . . .  co(Xs) for any polynomial f in s noncommuting in- 
determinates; the second requirement is equivalent to A (in the real case A ® C )  
permitting coordinates such that L (x) is lower triangular for all x C A and strictly 
lower triangular for all x E Ker co (see [6] for details). Hence there is (at least in 
A ® C )  a basis (c0 . . . . .  e , )  such that 

C 2 ~ C 0 

CoCi = 2iCi + ~ 20ikCk f o r  1 <iNn, 
k=i+ 1 

CiCj = ~ 2ijl ct for 1 < i, j < n 
/=max { i , j }+ l  

with 2i, 2Oik, 2ijl E • (cf. [6, Theorem 3.13]). The numbers 20 = 1, 21 . . . . .  An are 
usually called the train roots o f  A. I f  S(y,  t) is bounded for t ~ oe, then S(y,  t) 
converges to an idempotent o f  A; cf. [2]. This holds in particular i rA  has a genetic 
realization, i.e. if  there are coordinates X o , . . . , x n  such that co (x )=  x0 + . . .  + x n  
and the standard simplex S = {x E A : xi>O, co(x) = 1} is closed under multipli- 
cation in A. 

2 A train equation for genetic algebras 

It is well-known that genetic algebras are train algebras, i.e. there is a positive 
integer s and ~1 . . . . .  as E l K  such that the baric identity 

X s--1 + O~lco(X)X s + ' ' "  + ~sfD(x)Sx : 0 

holds for all x E A; cf. [6]. 
We will show that the gk (x) introduced above also satisfy a baric identity: 

Proposition 2.1 Let A be a genetic algebra. Then there is a positive integer r and 
71, - . . , 7 r  E l K  such that 
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gr(X) + 71(-O(X)gr-l(X) -[- "'" + 7rCO(x)r go(X) = 0 

for all x E A. 

Proof As cited above, we can find coordinates (xo,xl , . . . ,xn) ,n  + 1 = dim A, such 
that 

g l ( x )  = x 2 = 

pl(xo) x°2 "~ 
~- "~1 ° XOXl I 

+ 22"xox2 I p 2 ( x o , x l )  . 

I \pn(XO,Xl . . . . .  X~-1) + 2," XoX~ / 

where Pl . . . . .  p ,  are homogeneous quadratic polynomials. We introduce a new grad- 
ing on the polynomial ring lK[xo, Xl , . . . ,  x,]  by assigning 

0, i f i = O  
deg xi = 2 i-1, i f  1 <i<n.  

With this definition, one checks that 

deg pj(xo . . . . .  X j - I )  ~=2 J 

for all j ,  and thus 

deg Ol(X)~ 

; 

2.211 

where " < "  is to be understood componentwise. We claim that this holds in general, 
i.e. 

deg gk(x) < 

for all k E N.  
Assume, it holds for some k > 1. Then 

deg Dgk(x) < 

; 
21 

2n"_ 1 

0 0 0 
2 0 0 0 0 

21 21 -- 2 0 0 

22 2 2 _ 2 0 22 _ 21 ' . .  

' ,  0 

2n-a 2 , - 1 _ 2  o 2 n - 1 _ 2 1  .. .  2 n - 1 - 2 ~ - 2  

Since 
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1 
gk+l(X) = ~ - ~ D o k ( x )  . x 2 (cf. Prop. 1.1), 

as desired. 

deg gk+l(x) < i 
2n- 1 

But the set o f  monomials  of  degree not greater than 2 n-1 is - up to powers of  
x0 - finite. Thus, the gk contain - up to powers of  xo - only a finite number M of  
monomials. For N = M .  dim A the polynomials ~oUgo, oaN--lgl . . . . .  gu will therefore 
be linearly dependent over K .  Now choose r minimal such that ~rgo,~o~-lgl . . . . .  g~ 
are lineraly dependent over IK. [] 

The converse is in general false, i.e. an algebra satisfying a train equation for 
the gk is not necessarily genetic. A counterexample is the algebra constructed in 
the proof  of  Theorem 3.21 in [6] to show that an algebra satisfying a "usual" 
train equation is not genetic in general. Let N be Suttle's famous 5-dimensional 
commutative algebra that is nil, but not nilpotent; cf. [4]. In particular, x 4 = x2x 2 = 0 
for all x E N. Define the algebra A := IK. c ® N by adjoining an idempotent c to N 
via (x0. c ÷ x) 2 := x~. c + x0. x + x 2 for all x0 C K and x E N. Note that ~o (xo. c + 
x) :=  xo defines a nontrivial homomorph i sm of  A. It is straightforward to verify that 
g3 (Y) - 2co (y) g2 (Y) + 7 ~) (y)2 gl (Y) - 1co (y)3 go (Y) = 0 holds for all y E A. 

Proposition 2.1 will now be used to compute the desired limit. We start with an 
auxiliary result: 

Proposit ion 2.2 Let  A be a commutative K-algebra satisfying a train equation 
g~(x) + 71e)(x)g~-i (x) + . . .  + 7r~O(x)~ go(x) = O. Then for  any positive integer k 
there are 7~,t . . . . .  7k,~ E]K such that 

gr+k(x) + 7k, l~(x)~+l gr-1 (x) + . . .  + 7k, r~o(x)k+~ go(x) = 0 

for  all x C A. 

Proo f  Induction on k does the trick, the case k = 0 being the hypothesis. Now let 
k > 0 and differentiate with respect to x in direction of  x 2, using (k + 1)gk+l (x) = 
Dgk (x)x2: 

( r+k  + 1)gr+k+l (x) + r7k ' 1 (D(X) k+l gr (X)÷ 

÷ ((k ÷ 1)Tk, 1 ÷ (r - 1)Tk, V)eO(x)k+2gr_l (x )÷ 

+ ((k + 2)7k, 2 + (r - 2)Tk, a)O~(x)k+3g~_2(x) + . . .  + 

+ ((k + r - -  1 )Tk ,  r _  1 + ~ k , r ) ~ O ( x ) k + r g  1 (X)+ 

+ (k ÷ r)yk, r~o(x)k+r+lgo(x) ---- O. 

Applying the hypothesis on gr (x) yields the result. [] 
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3 T h e  l i m i t  f o r m u l a  

Let H := {x C A : co(x) = 1}. What Proposition 2.2 tells us is that if the limit 
g(x) := lim gk (x) exists for x E H,  it can be represented as a linear combination 

k-+ec 
of  g0 (x), gl (x) . . . . .  gr-I  (x), say 

g ( x )  q- o:lgr-1 (X) 4- . . .  q- O:r-lgl (X) q- ~:rgo(X) = 0 

for all x E H.  Since g(x)  is constant along the trajectory S(x ,  t), it is an invariant 
of  motion, i.e. 

DO (x ) .  (X 2 --  X) = 0 

for all x E H.  Combining the two equations yields 

k °~iDOr-i (X) x2 = £ o~iDgr-i (x)x. 
i=1 i=1 

Applying Proposition 2.1 allows us to simplify to 

r r 

~ o~i(r q- 1 - i ) g r + l - i ( X )  = ~ o~i(r -- i ) g r - i ( X ) .  
i=1 i=1  

For arbitrary y with w ( y ) ~  O, Y E H,  thus: 

r r 

~i (r + 1 -- i) co ( y ) i - l  gr+l_i (Y) = ~ O~i (r - i) co (y)i  gr_i (y ) .  
i=1 i=1  

Since the set {y C A • co(y)4=0} is Zariski-open, the last equation is an identity in 
A. Now we combine corresponding terms and apply the train equation for the gg: 

( - r e l  - r ~ l g l  -}- (r - 1)o:2)co(y)gr-I  ( y ) +  

(--r~20{ 1 - -  (r - 1)~2 + (r - 2)o~3)co(y)2gr_2 (y)'-~ 

(--l~r-- 1 ~1 -- 20~r_ 1 -- O~r) (i) (y)r-- 1 gl (Y )+  

( - - r~rO q --  O~r)co(y)r g o ( y )  = O. 

Since the polynomials o r ' g o  . . . . .  co 'gr -1  are linearly independent over $2, we can 
equate the coefficients to zero, thus deriving the following system of  linear equations: 

- r  - ry l  r - 1 
- r T 2  - r  + 1 
--ry3 0 

- r y r - 1  0 
- r 7 ~  0 

0 
r - - 2  

- r + 2  

0 . . .  0 ~ ( ~ I N ~  

0 . . .  0 ] ~2 I 
r - 3  . . .  0 ~3 I 

"'. " " : : = 0 .  
• I 

--3 2 0 : 
0 --2 1 ! , 

. . .  o -1  

The solution can be computed easily: 
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[ 1 ( ' ~ 1 - [ - ~ ) 2 - ~ -  ' ' '  -~-~)r)) 
gl ~" / ~ (V2 -~-.' '." Jr- ]~r) 

for some constant  a E]K.  Final ly,  the constant  ~ can be determined from the fact that 
co(0k(x)) = 1 for all x 6 H and k > 0  (see Proposi t ion 1 .1)  and, as a consequence,  
co(kfim g k ( x ) ) =  1. Work ing  this out f inally yields: 

Theorem 3.1 Let  A be a commutative IK-alyebra with a nontrivial homomorphism 
co • A --+ ]K satisfying the identity 

Or(X) -[- 71CO(X)gr-1 (X) q- "'" q- Trco(x)r gO(X) : 0 

for  some 71 . . . . .  7r C IK. I f  for  x E A  with co(x) = 1 the limit l im gk(x) exists, 
k.- .* cx~ 

then 

.Tj gr-i(X) i:1 \ J=t  / 
l im Ok (x) = 

i =1  s 
which coincides with l im S(x,  t). 

l----coX) 

It should be noted that it is not  clear i f  existence o f  the l imit  o f  S (x, t) for t --~ ~<D 
implies the existence o f  the l imit  o f  gk (x) for k ~ cx~. 

Acknowledgement. I thank Prof. K. P. Hadeler for supplying me with valuable suggestions, in 
particular an idea to shorten and clarify the proof of the main result. 
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